Regularity for the fractional Gelfand problem up to dimension 7
نویسندگان
چکیده
منابع مشابه
The Dirichlet Problem for the Fractional Laplacian: Regularity up to the Boundary
We study the regularity up to the boundary of solutions to the Dirichlet problem for the fractional Laplacian. We prove that if u is a solution of (−∆)u = g in Ω, u ≡ 0 in R\Ω, for some s ∈ (0, 1) and g ∈ L∞(Ω), then u is C(R) and u/δ|Ω is C up to the boundary ∂Ω for some α ∈ (0, 1), where δ(x) = dist(x, ∂Ω). For this, we develop a fractional analog of the Krylov boundary Harnack method. Moreov...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولRegularity of Minimizers up to Dimension 7 in Domains of Double Revolution
We consider the class of semi-stable positive solutions to semilinear equations −∆u = f(u) in a bounded domain Ω ⊂ Rn of double revolution, that is, a domain invariant under rotations of the first m variables and of the last n−m variables. We assume 2 ≤ m ≤ n− 2. When the domain is convex, we establish a priori Lp and H1 0 bounds for each dimension n, with p = ∞ when n ≤ 7. These estimates lead...
متن کاملRegularity of solutions to the parabolic fractional obstacle problem
In recent years, there has been an increasing interest in studying constrained variational problems with a fractional diffusion. One of the motivations comes from mathematical finance: jumpdiffusion processes where incorporated by Merton [14] into the theory of option evaluation to introduce discontinuous paths in the dynamics of the stock’s prices, in contrast with the classical lognormal diff...
متن کاملFree Boundary Regularity in the Parabolic Fractional Obstacle Problem
The parabolic obstacle problem for the fractional Laplacian naturally arises in American option models when the assets prices are driven by pure jump Lévy processes. In this paper we study the regularity of the free boundary. Our main result establishes that, when s > 12 , the free boundary is a C 1,α graph in x and t near any regular free boundary point (x0, t0) ∈ ∂{u > φ}. Furthermore, we als...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2014.04.048